Features

- Single Voltage Read/Write Operation: 2.65V to 3.6V
- Fast Read Access Time 70 ns
- Sector Erase Architecture
 - Thirty-one 32K Word (64K Bytes) Sectors with Individual Write Lockout
 - Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout
- Fast Word Program Time 10 μs
- Fast Sector Erase Time 100 ms
- Suspend/Resume Feature for Erase and Program
 - Supports Reading and Programming from Any Sector by Suspending Erase of a Different Sector
 - Supports Reading Any Byte/Word in the Non-suspending Sectors by Suspending Programming of Any Other Byte/Word
- Low-power Operation
 - 10 mA Active
 - 15 µA Standby
- Data Polling, Toggle Bit, Ready/Busy for End of Program Detection
- RESET Input for Device Initialization
- Sector Lockdown Support
- TSOP and CBGA Package Options
- Top or Bottom Boot Block Configuration Available
- 128-bit Protection Register
- Minimum 100,000 Erase Cycles
- Common Flash Interface (CFI)
- Green (Pb/Halide-free) Packaging

1. Description

The AT49BV163D(T) is a 2.7-volt 16-megabit Flash memory organized as 1,048,576 words of 16 bits each or 2,097,152 bytes of 8 bits each. The x16 data appears on I/O0 - I/O15; the x8 data appears on I/O0 - I/O7. The memory is divided into 39 sectors for erase operations. The device is offered in a 48-lead TSOP and a 48-ball CBGA package. The device has $\overline{\text{CE}}$ and $\overline{\text{OE}}$ control signals to avoid any bus contention. This device can be read or reprogrammed using a single power supply, making it ideally suited for in-system programming.

The device powers on in the read mode. Command sequences are used to place the device in other operation modes such as program and erase. The device has the capability to protect the data in any sector (see "Sector Lockdown" on page 5).

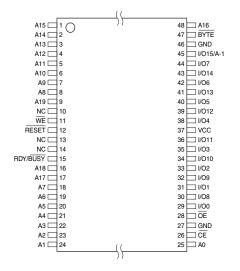
To increase the flexibility of the device, it contains an Erase Suspend and Program Suspend feature. This feature will put the erase or program on hold for any amount of time and let the user read data from or program data to any of the remaining sectors within the memory. The end of a program or an erase cycle is detected by the READY/BUSY pin, Data Polling or by the toggle bit.

A six-byte command (Enter Single Pulse Program Mode) sequence to remove the requirement of entering the three-byte program sequence is offered to further improve programming time. After entering the six-byte code, only single pulses on the write control lines are required for writing into the device. This mode (Single Pulse Byte/Word Program) is exited by powering down the device, or by pulsing the $\overline{\text{RESET}}$ pin low for a minimum of 500 ns and then bringing it back to $V_{\text{CC}}.$ Erase,

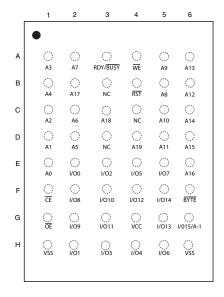
16-megabit (1M x 16/2M x 8) 3-volt Only Flash Memory

AT49BV163D AT49BV163DT

Erase Suspend/Resume and Program Suspend/Resume commands will not work while in this mode; if entered they will result in data being programmed into the device. It is not recommended that the six-byte code reside in the software of the final product but only exist in external programming code.


The BYTE pin controls whether the device data I/O pins operate in the byte or word configuration. If the BYTE pin is set at logic "1", the device is in word configuration, I/O0 - I/O15 are active and controlled by $\overline{\text{CE}}$ and $\overline{\text{OE}}$.

If the $\overline{\text{BYTE}}$ pin is set at logic "0", the device is in byte configuration, and only data I/O pins I/O0 - I/O7 are active and controlled by $\overline{\text{CE}}$ and $\overline{\text{OE}}$. The data I/O pins I/O8 - I/O14 are tri-stated, and the I/O15 pin is used as an input for the LSB (A-1) address function.


2. Pin Configurations

Pin Name	Function
A0 - A19	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RESET	Reset
RDY/BUSY	READY/BUSY Output
I/O0 - I/O14	Data Inputs/Outputs
I/O15 (A-1)	I/O15 (Data Input/Output, Word Mode) A-1 (LSB Address Input, Byte Mode)
BYTE	Selects Byte or Word Mode
NC	No Connect

2.1 48-lead TSOP (Type 1) Top View

2.2 48-ball CBGA Top View (Ball Down)

7. Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} + 0.6V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

8. Protection Register Addressing Table

Word	Use	Block	A 7	A 6	A 5	A 4	А3	A2	A 1	A0
0	Factory	Α	1	0	0	0	0	0	0	1
1	Factory	Α	1	0	0	0	0	0	1	0
2	Factory	Α	1	0	0	0	0	0	1	1
3	Factory	Α	1	0	0	0	0	1	0	0
4	User	В	1	0	0	0	0	1	0	1
5	User	В	1	0	0	0	0	1	1	0
6	User	В	1	0	0	0	0	1	1	1
7	User	В	1	0	0	0	1	0	0	0

Notes: 1. All address lines not specified in the above table must be "0" when accessing the protection register, i.e., A19 - A8 = 0.

- 2. The addressing shown above should be used when the device is operating in the word (x16) mode.
- 3. In the byte (x8) mode, A-1 should be used when addressing the protection register:

with A-1 = 0, the LSB of the address location can be accessed; and

with A-1 = 1, the MSB of the address location can be accessed

11. DC and AC Operating Range

Operating Temperature (Case)	Ind.	-40°C - 85°C		
V _{CC} Power Supply		2.65V to 3.6V		

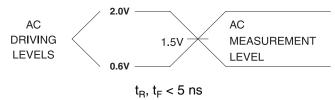
12. Operating Modes

Mode	CE	ŌĒ	WE	RESET	Ai	I/O
Read	V _{IL}	V _{IL}	V _{IH}	V _{IH}	Ai	D _{OUT}
Program/Erase ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	V _{IH}	Ai	D _{IN}
Standby/Program Inhibit	V _{IH}	X ⁽¹⁾	Х	V _{IH}	X	High-Z
	Х	Х	V _{IH}	V _{IH}		
Program Inhibit	Х	V _{IL}	Х	V _{IH}		
	Х	Х	Х	V _{IH}		
Output Disable	Х	V _{IH}	Х	V _{IH}		High-Z
Reset	Х	Х	Х	V _{IL}	X	High-Z
Product Identification Software ⁽⁵⁾				V	A0 = V _{IL} , A1 - A19 = V _{IL}	Manufacturer Code ⁽³⁾
Product identification Software				V _{IH}	A0 = V _{IH} , A1 - A19 = V _{IL}	Device Code ⁽³⁾⁽⁴⁾

Notes: 1. X can be V_{IL} or V_{IH} .

- 2. Refer to AC programming waveforms on page 19.
- 3. Manufacturer Code: 1FH (x8); 001FH (x16), Device Code: C0H (x8)-AT49BV163D; 01C0H (x16)-AT49BV163D; C2H (x8)-AT49BV163DT; 01C2H (x16)-AT49BV163DT.
- 4. Additional device code: 01H (x8) AT49BV163D(T); 001H (x16) AT49BV163D(T).
- 5. See details under "Software Product Identification Entry/Exit" on page 21.

13. DC Characteristics


Symbol	Parameter	Condition	Min	Тур	Max	Units
ILI	Input Load Current	V _{IN} = 0V to V _{CC}			2	μΑ
I _{LO}	Output Leakage Current	$V_{I/O} = 0V \text{ to } V_{CC}$			2	μΑ
I _{SB}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to V_{CC}		15	25	μΑ
I _{CC} (1)	V _{CC} Active Read Current	f = 5 MHz; I _{OUT} = 0 mA		10	15	mA
I _{CC1}	V _{CC} Programming Current				25	mA
V_{IL}	Input Low Voltage				0.6	V
V_{IH}	Input High Voltage		2.0			V
V_{OL1}	Output Low Voltage	I _{OL} = 2.1 mA			0.45	V
V_{OL2}	Output Low Voltage	I _{OL} = 1.0 mA			0.20	V
V_{OH1}	Output High Voltage	I _{OH} = -400 μA	2.4			V
V_{OH2}	Output High Voltage	I _{OH} = -100 μA	2.5			V

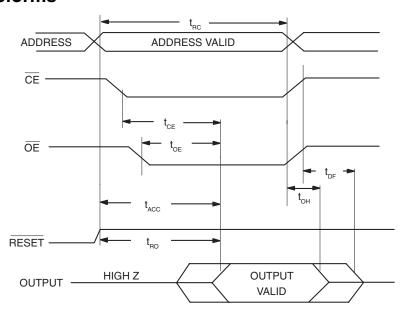
Note: 1. In the erase mode, I_{CC} is 25 mA.

14. Input Test Waveforms and Measurement Level

15. Output Test Load

16. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$


Symbol	Тур	Max	Max Units Cond	
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

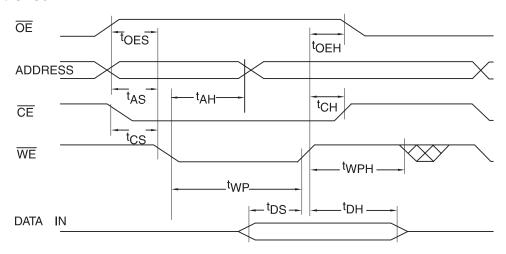
Note: 1. This parameter is characterized and is not 100% tested.

17. AC Read Characteristics

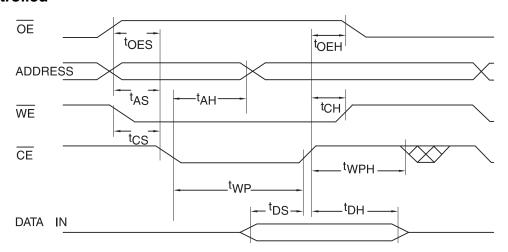
		AT49BV1	AT49BV163D(T)-70	
Symbol	Parameter	Min	Max	Units
t _{RC}	Read Cycle Time	70		ns
t _{ACC}	Address to Output Delay		70	ns
t _{CE} ⁽¹⁾	CE to Output Delay		70	ns
t _{OE} ⁽²⁾	OE to Output Delay	0	20	ns
t _{DF} ⁽³⁾⁽⁴⁾	CE or OE to Output Float	0	25	ns
t _{OH}	Output Hold from \overline{OE} , \overline{CE} or Address, whichever occurred first	0		ns
t _{RO}	RESET to Output Delay		100	ns

18. AC Read Waveforms(1)(2)(3)(4)

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on $t_{\mbox{\scriptsize ACC}}.$
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first (CL = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

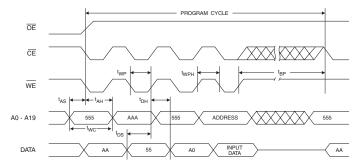


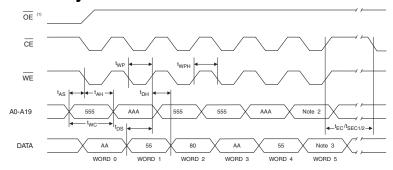
19. AC Byte/Word Load Characteristics


Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	0		ns
t _{AH}	Address Hold Time	25		ns
t _{CS}	Chip Select Setup Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	25		ns
t _{WPH}	Write Pulse Width High	15		ns
t _{DS}	Data Setup Time	25		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns

20. AC Byte/Word Load Waveforms

20.1 WE Controlled


20.2 **CE** Controlled


21. Program Cycle Characteristics

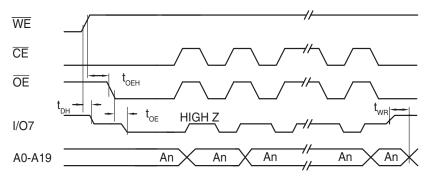
Symbol	Parameter	Min	Тур	Max	Units
t _{BP}	Byte/Word Programming Time		10	120	μs
t _{AS}	Address Setup Time	0			ns
t _{AH}	Address Hold Time	25			ns
t _{DS}	Data Setup Time	25			ns
t _{DH}	Data Hold Time	0			ns
t _{WP}	Write Pulse Width	25			ns
t _{WPH}	Write Pulse Width High	15			ns
t _{WC}	Write Cycle Time	70			ns
t _{RP}	Reset Pulse Width	500			ns
t _{EC}	Chip Erase Cycle Time		16		seconds
t _{SEC1}	Sector Erase Cycle Time (4K Word Sectors)		0.1	2.0	seconds
t _{SEC2}	Sector Erase Cycle Time (32K Word Sectors)		0.5	6.0	seconds
t _{ES}	Erase Suspend Time			15	μs
t _{PS}	Program Suspend Time			10	μs
t _{ERES}	Delay between Erase Resume and Erase Suspend	500			μs

22. Program Cycle Waveforms

23. Sector or Chip Erase Cycle Waveforms

Notes: 1. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

- 2. For chip erase, the address should be 555. For sector erase, the address depends on what sector is to be erased. (See note 3 under "Command Definition Table" on page 11.)
- 3. For chip erase, the data should be 10H, and for sector erase, the data should be 30H.

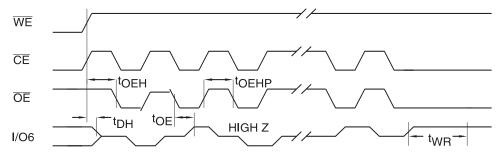

24. Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in "AC Read Characteristics" on page 17.

25. Data Polling Waveforms


26. Toggle Bit Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	\overline{OE} to Output Delay ⁽²⁾				ns
t _{OEHP}	OE High Pulse	50			ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in "AC Read Characteristics" on page 17.

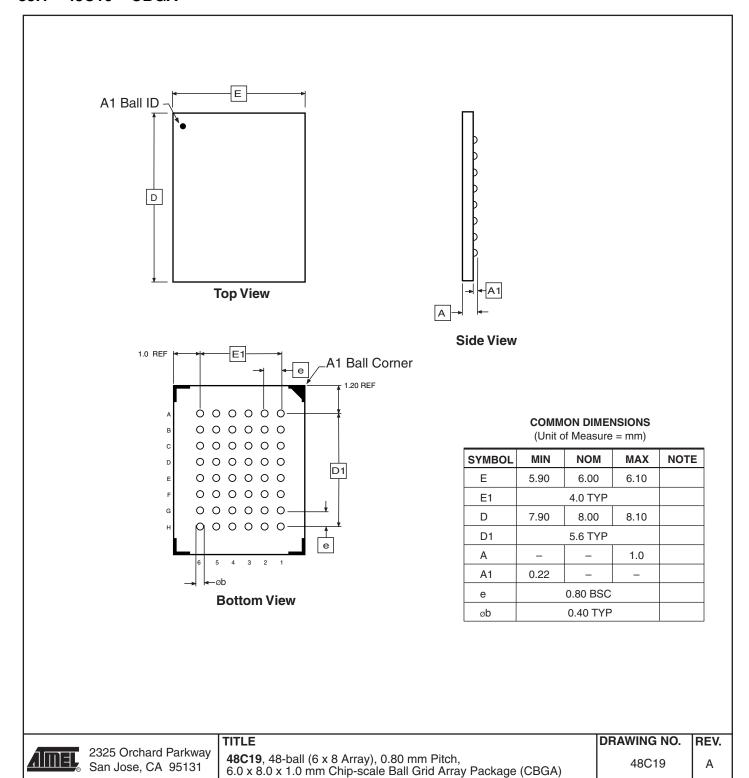
27. Toggle Bit Waveforms⁽¹⁾⁽²⁾⁽³⁾

Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit. The t_{OEHP} specification must be met by the toggling input(s).

- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

20

32. Ordering Information


32.1 Green Package (Pb/Halide-free)

t _{ACC} (ns)	I _{CC} (mA)				
	Active	Standby	Ordering Code	Package	Operation Range
70	15	0.025	AT49BV163D-70CU	48C19	Industrial (-40° to 85°C)
			AT49BV163DT-70CU		
			AT49BV163D-70TU	48T	
			AT49BV163DT-70TU		

Package Type			
48C19	48-ball, Plastic Chip-Size Ball Grid Array Package (CBGA)		
48T	48-lead, Plastic Thin Small Outline Package (TSOP)		

33. Packaging Information

33.1 48C19 - CBGA

